HYL-012R0350G081

Constant current LED driver

Product description

- built-in constant current LED Driver
- Adjustable output current between 200 and 350mA via DIP switch
- Max. output power 12 W
- Up to 86% efficiency

- For luminaires of protection class II
- Nominal life-time up to $100,000 \mathrm{~h}$
- 5-year guarantee

Benefits

- Application-oriented operating window for maximum compatibility
- Long lasting and high reliability
- PC Plastic material housing $40 \times 22 \mathrm{~mm}$

Interfaces

- Terminal blocks: 45° push terminals

Applications

- Linear and area lighting
- Office - industrial - shop

Approval marks

RoHS IP20 SELV
In preparation, if not already printed on product label

LED Driver
Compact fixed output

Technical data

Rated supply voltage	220-240 V
AC voltage range	198-264 V
DC voltage range	198-264 V
Mains frequency	$0 / 50 / 60 \mathrm{~Hz}$
Overvoltage protection	. a
Typ. current (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	40-70 mA
Leakage current (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	$<500 \mu \mathrm{~A}$
Max. input power	15 W
Typ. efficiency (at $230 \mathrm{~V} / 50 \mathrm{~Hz} /$ full load)	0.86
λ (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	0.9C
Typ. power input on stand-by	n.a
Typ. input power in no-load operation	ก.a
In-rush current (peak / duration)	9A/173 us
THD (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	<15 \%
Time to light (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	n.a
Time to light (DC mode)	ก.a
Switchover time (AC/DC)	n.a
Turn off time (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	$<4 \mathrm{~ms}$
Output current tolerance	± 5 \%
Output current ripple	± 5 \%
Max. output voltage (no-load voltage)	60 V
Dimming range	n.a
Mains surge capability (between $\mathrm{L}-\mathrm{N}$)	0.5 kV
Mains surge capability (between L/N - PE)	n.a
Surge voltage at output side (against PE)	n.a
Dimensions L x W x H	$81 \times 40 \times 22$

Ordering data

Type	Packaging carton	Weight per pc.
HYL-012R0350G081	$100 \mathrm{pc}(\mathrm{s})$	0.60 Kg

Units: mm

DIP Switch

Specific technical data

Type	DIP PIN 1	witch	Output curren $t(m A)$	Min. forward voltage (V)	Max. forward voltage (V)	Min. output power (W)	Max. output power (W)	Typ. power consumption (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load) (W)	Typ.current consumption (at 230 V , 50 Hz , full load)(A)
HYL-012R0350G081	\bigcirc	\bigcirc	350	18	36	6.3	12.6	14.7	0.070
	\bigcirc	\bigcirc	300	18	36	5.4	10.8	12.6	0.060
	\bigcirc	\bigcirc	250	18	36	4.5	9	10.8	0.050
	\bigcirc	\bigcirc	200	18	36	3.6	7.2	8.7	0.040

LED Driver

1. IEC Standards

CISPR 15
IEC 61000-3-2
IEC 61000-3-3
IEC 61347-1
IEC 61347-2-13
IEC 62384
IEC 61547
IEC 62386-101 DALI-2
IEC 62386-102 DALI-2
IEC 62386-207 DALI-2
According to EN 50172 for use in central battery systems

EN Standards
EN 55015
EN 61000-3-2
EN 61000-3-3
EN 61347-1
EN 61347-2-13
EN 62384
EN 61547

China National Standards
GB/T17743
GB 17625.1
GB 17625.2
GB 19510.1
GB 19510.14
GB/T24825
GB/T18595
2. Thermal details and life-time
2.1 Expected life-time

Type	Output current	ta	$35^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$
HYL-012R0350G081	$200-250 \mathrm{~mA}$	tc	$65^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$
		Life-time	$>100,000 \mathrm{~h}$	$>85,000 \mathrm{~h}$	$>65,000 \mathrm{~h}$	$>50,000 \mathrm{~h}$
	$250-350 \mathrm{~mA}$	tc	$70^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$
		Life-time	$>100,000 \mathrm{~h}$	$>70,000 \mathrm{~h}$	$>50,000 \mathrm{~h}$	$>30,000 \mathrm{~h}$

The LED Driver is designed for a life-time stated above under reference conditions and with a failure probability of less than 10%. The relation of t_{c} to ta temperature depends also on the luminaire design.

3. Installation / wiring

3.1 Circuit diagram

3.2 Wiring type and cross section

Solid wire with a cross section of $0.5-1.5 \mathrm{~mm}^{2}$. Strip $8-9 \mathrm{~mm}$ of insulation from the cables to ensure perfect operation of terminals

3.3 Loose wiring

Press down the "push button" and remove the cable from front.

Wire preparation:
$0.5-1.5 \mathrm{~mm}^{2}$

LED Driver

3.4 Wiring guidelines

- The cables should be run separately from the mains connections and mains cables to ensure good EMC conditions.
- The LED wiring should be kept as short as possible to ensure good EMC. The max. secondary cable length is 2 m (4 m circuit), this applies for LED output.
- Secondary switching is permitted. But the secondary switch may damage the LED modules, so it is not recommended to do so.
- The LED Driver has no inverse-polarity protection on the secondary side. Wrong polarity can damage LED modules with no inverse-polarity protection.
- Wrong wiring of the LED Driver can lead to malfunction or irreparable damage.

3.5 Hot plugging

Hot plug-in is supported, but it may damage the LED modules due to residual output voltage is too high.
4. Electrical values

Note: In section"4.1 Typical Opreating Window"',Make sure that the LED Driver is operated within the given window under all operating conditions. Special attention needs to be paid at dimming and DC emergency operation as the forward voltage of the connected LED modules varies with the dimming level, due to the implemented amplitude dimming technology. Coming below the specified minimum output voltage of the LED Driver may

LED Driver
cause the device to shut-down.
4.5 Maximum loading of automatic circuit breakers

Type	Ipeak / Δ t	circuit breaker (CB)	10 A	16 A	20 A	25 A
		CB-Typ				
HYL-012R0350G081	9A/173us	B	42	62	72	88
		C	60	102	112	132

Typical current - time profile when switching on
4.6 Harmonic distortion in the mains supply (at $230 \mathrm{~V} / 50 \mathrm{~Hz}$ and full load) in \%

	THD	3.	5.	7.	9.	11.
HYL-012R0350G081	<15	<5	<5	<5	<3	<3

5. Miscellaneous

5.1 Function: adjustable current

Adjustable output current between 200 and 350 mA via DIP switch.
5.2 Short-circuit behavior

In case of a short circuit on the output side (LED) the LED Driver switches off. After elimination of the short-circuit fault the LED Driver will recover automatically.

5.3 No-load operation

The LED Driver works in burst working mode to provide a constant output voltage regulation which allows the application to be able to work safely when LED string opens due to a failure.

5.4 Overload protection

If the output voltage range is exceeded the LED Driver will protect itself and LED may flicker. After elimination of the overload, the nominal operation is restored automatically.

5.5 Over temperature protection

The LED Driver is protected against temporary thermal overheating. If the temperature limit is exceeded, the Driver switch off. It restarts automatically. The temperature protection is activated typically at $10^{\circ} \mathrm{C}$ above tc max.

6. Miscellaneous

6.1 Isolation and electric strength testing of luminaires

Electronic devices can be damaged by high voltage. This has to be considered during the routine testing of the luminaires in production.
According to IEC 60598-1 Annex Q (informative only!) or ENEC 303-Annex A, each luminaire should be submitted to an isolation test with 500 V DC for 1 second. This test voltage should be connected between the interconnected phase and neutral terminals and the earth terminal.The isolation resistance must be at least $2 \mathrm{M} \Omega$. As an alternative, IEC 60598-1 Annex Q describes a test of the electrical strength with 1500 V AC (or 1.414×1500 V DC) .

6.2 Storage conditions

Environmental conditions: 5 \% up to max. 85 \%,not condensed(max. 56 days/year at 85 \%)
Storage temperature: $-40^{\circ} \mathrm{C}$ up to max. $+80^{\circ} \mathrm{C}$
The devices have to be acclimatized to the specified temperature range (ta)before they can be operated.

6.3 Additional information

\author{

- China
 Add. Shenzhen Hengyao Lighting Technology Co., Ltd. 4th floor, Building 4, the third Tangtou industrial zone, Shiyan town, Baoan district, Shenzhen, China
 Tel. \quad +86 75527772329
 E-Mail sz@3aaa.com
}
- Germany

Add.	Washingtonplatz 3 64287 Darmstadt
Tel.	$+49(0) 17680077842$
E-Mail	zm.yang@3aaa.com

3AAA and the 3AAA logo are trademarks or registered trademarks of hengyao. Information in this document supersedes and replaces all information previously supplied.
The 3AAA logo is a registered trademark of Hengyao. All other names are the property of their respective owners. ©2021 Hengyao - All rights reserved

